E-Spres3D is a spin-off of Pisa University. E-Spres3D (e-Simulation and Planning from radiological exames to surgery) mainly offers support services for the Planning, Simulation and Execution of surgical interventions, briefly illustrated below:

1. PATIENT-SPECIFIC 3D MODELING
2. SURGICAL GUIDES
3. MEDICAL SIMULATORS

They turn to the Health System, to Companies and Research Centers operating in the Biomedical sector and to Medical / Surgical Training Structures by offering: surgical planning services thanks to patient-specific 3D modeling, solid replicas with rapid prototyping, medical simulators and customized solutions HW-SW.

Company name: E-SPRES3D S.R.L.
Location: PISA, Via Paradisa 2, 56124 c/o Ospedale di Cisanello Ed. 102
Fiscal and VAT code: 02044140503
Established: March 2012
Legal form: LIMITED LIABILITY COMPANY (LLC, SRL)
Internet site: http://www.espres3d.com/
NACE Code: 72.19
Sector: LIFE SCIENCE
Spinoff: Università di Pisa

Subscrite Capital
10 K- 20 K
NO
Female, young or Foreign Predominance
Qualified Team from University of Pisa

OPERATIVE TEAM

Marina Carbone
CEO of the E-Spres3D. Biomedical engineer, PhD in robotics at the Sant’anna School. 7 years in R&D at EndoCAS - UNIPI

Sara Condino
Certification and Experimentation Manager. Biomedical engineer, PhD in technologies for health at UNIPI. 7 years in R&D at EndoCAS / Sant’Anna School

Vincenzo Ferrari
Product Engineering. Biomedical engineer, PhD in technologies for health at UNIPI. Since 2006 R&D coordinator at EndoCAS – UNIPI. 5 years coordinator R&D for SW-SCADA and Machine Vision

CLINICAL ADVISORY BOARD

Paolo Parchi
Orthopedic surgeon, researcher, co-inventor of the patent, solid experience in spinal surgery

Carla Cappelli
Radiologist, Phd. Expert in the processing of volumetric images surgeon

Mauro Ferreri
Director of a medical surgical department, expert in the management of hospital dynamics

info@espres3d.com
e-spres3dsrl@legalmail.it
They follow a “Product as a Service” model. The surgeon imports the images of the patient under examination in a dedicated software environment in which he plans the trajectories screws for the specific patient. The schedule along with the patient images is uploaded to a server dedicated. At this point the design phase on the e-SPres3D side begins. At about trajectories indicated by the surgeon the CAD of the surgical guide is drawn. The environment of CAD design is commercial and the guide is defined in parametric terms automated. Once the CAD project is ready, it is sent to print via a 3D printer professional and certified to print in sterilizable material. The finished piece comes packed in a disposable patient-kit ready to be delivered via private courier to the sterilization center and then to the surgeon. The patient-kit is likely composed of the templates necessary for the intervention together with the standard instrument kit (screws and rods).
INTERESTS MARKET GEOGRAPHIC AREA OF INTEREST AND IP

INTERESTS

<table>
<thead>
<tr>
<th></th>
<th>Customers</th>
<th>Lender / Investor</th>
<th>Incubator / Coworking spaces</th>
<th>Partner university</th>
<th>Business partners</th>
<th>Technical support figures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MARKET GEOGRAPHIC AREA OF INTEREST

- **Worldwide**

PATENT: IT - EU – CINA – USA

PATENT FILING NUMBER: WO2012140569